Дальномерная система навигации (DME) и её возможности. Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС Vor dme комплексная радионавигационная система

Предназначен для формирования в пространстве навигационных сигналов с информацией:

    Об азимуте любой точки зоны действия относительно магнитного меридиана.

    об отклонениях вс от заданного пеленга

    Индикация «от-на»,которая говорит о направлении полета

    сигналы опознавания(морзянка)

    речевые сообщения(метровый диапазон)960-1215 мгц

Наземный всенаправленный азимутальный ОВЧ-радиомаяк (РМА) предназначен для измерения азимута воздушного судна относительно места установки маяка при полетах ВС по трассам и в зонах аэродромов.

РМА используется ВС для захода на посадку по приборам, в случае если антенная система РМА юстирована по магнитному меридиану, а РМА расположен на осевой линии взлетно-посадочной полосы (далее – ВПП) (в створе ВПП) или в стороне от осевой линии, но при этом:

    если линии пути конечного этапа захода на посадку пересекает продолжение осевой линии ВПП, то точка пересечения должна находиться на расстоянии не менее 1400 м от порога ВПП, а угол пересечения не должен превышать 30° для схем захода на посадку, предназначенных только для воздушных судов категории А, В и 15° для остальных схем;

    если линия пути конечного этапа захода на посадку не пересекает продолжение осевой линии ВПП перед порогом, то угол между линией пути конечного этапа захода на посадку и продолжением осевой линии ВПП должен быть менее 5°, а на расстоянии 1400 м от порога ВПП линия пути конечного этапа захода на посадку должна проходить не далее 150 м от продолжения осевой линии ВПП.

Примечание: РМА считается расположенным в створе ВПП, если магнитный путевой угол (МПУ) последней прямой захода на посадку отличается от МПУ залегания ВПП, используемой для посадки, на угол не более ±5°.

РМА, РМД и РМА/РМД должны быть размещены на трассе или аэродроме в соответствии с требованиями технической документации на данный тип оборудования, таким образом, чтобы максимально обеспечить решение навигационных задач. Место размещения РМА должно быть ровным или иметь уклон не более 4% на расстоянии до 400 м от маяка. Место установки РМА должно находиться возможно дальше от ограждений и воздушных проводных линий, высота которых должна быть относительно центра антенны составлять угол не более 0,5 град. Сооружения не должны находиться ближе 150 м от позиции и иметь угол места более 1,2 град. Антенное устройство РМД должно быть расположено над антенным устройством маяка РМА при использовании приемоответчика РМД совместно с маяком РМА. Допускается разнесение антенных устройств РМД и РМА на расстояние не более30 м при обеспечении полетов в районе аэродрома и не более 600 м при обеспечении полетов по воздушным трассам.

Радиомаяк азимутальный VOR (РМА-90) является наземным оборудованием азимутальной системы навигации воздушных судов метрового диапазона волн с форматом сигналов VOR, и рекомендован ICAO в качестве основного средства измерения азимута на авиатрассах или в качестве дополнительного средства обеспечения захода на посадку и посадки самолетов гражданской авиации (ГА). (РМА-90) предназначен для формирования в пространстве навигационных сигналов, содержащих информацию об азимуте любой точки зоны действия относительно точки установки радиомаяка, и сигналов опознавания радиомаяка.

При одновременном приеме бортовой аппаратурой сигналов двух VOR может быть определено положение воздушного судна. Для этого необходима карта и знание местоположения радиомаяков. VOR может объединяться с дальномерным радиомаяком DME/N. В этом случае при наличии на борту воздушного судна соответствующей дальномерной аппаратуры достаточно одного совмещенного радиомаяка VOR/DME для определения положения воздушного судна в системе полярных координат «азимут - дальность».

Принцип работы

Амплитудно-частотно-модулированный сигнал опорной фазы излучается неподвижной всенаправленной антенной. Амплитудно-модулированный частотой 30Гц сигнал переменной фазы излучается вращающейся (30 об/с) направленной антенной с диаграммой направленности в виде "восьмёрки".

Складывающиеся в пространстве диаграммы направленности образуют переменное по амплитуде поле, изменяющееся с частотой 30Гц. Радиомаяк VOR ориентирован так, что фазы опорного и переменного сигналов совпадают в направлении магнитного северного меридиана. В момент, когда максимум диаграммы направленности вращающегося поля направлен туда, частота сигнала поднесущей имеет максимальное значение(1020Гц). В остальных направлениях фазовый сдвиг меняется от ноля до 360 градусов. Упрощённо можно представить VOR как радиомаяк, излучающий в каждом направлении свой индивидуальный сигнал. Количество таких "сигналов-азимутов" определяется только чувствительностью бортового оборудования к величине сдвига фаз, прямо пропорционального текущему азимуту ЛА относительно радиомаяка. В этом контексте, вместо понятия "азимут" употребляется термин радиал (VOR Radials). Принято считать что количество радиалов равно 360. Номер радиала совпадает с числовым значением магнитного азимута.

Основные технические характеристики VOR (РМА-90)

Зона действия:

    в горизонтальной плоскости от 0 до 360

    в вертикальной плоскости (относительно поверхности ограничения прямой видимости), град не более 3

    снизу, град не менее 40

    сверху, град по дальности: не менее 300

    на высоте 12000 м, км не менее 100

    на высоте 6000 м (при половинной мощности), км

    Поляризация излучения горизонтальная

    Погрешность информации об азимуте в точках на удалении 28 м от центра антенны, град не более 1

    Частота рабочего канала (несущих колебаний), одно из дискретных значений в диапазоне 108,000-117,975 МГц через 50 кГц

    Мощность несущих колебаний (регулируемая), Вт от 20 до 100

    Габаритные размеры и масса шкафа РМА 496x588x1724 мм; не более 200 кг

    Диаметр экрана антенны РМА 5000 мм

    Масса антенны РМА

    без экрана 130 кг

    Характеристика DME . Дальномерная радионавигационная система (ДРНС) включает в себя наземное оборудование (дальномерный радиомаяк) и бортовое оборудование (самолетный дальномер).

    В международной практике такие системы называют DME (Distance Measuring Equipment – оборудование измерения дальности). Такое на название используется и в документах аэронавигационной информации России, хотя радиомаяки, выпускаемые отечественными производителями, могут иметь и совсем другое официальное название (например, РМД – радиомаяк дальномерный).

    Принцип действия дальномерной системы в упрощенном виде заключается в следующем (рис.6.1). Самолетный дальномер на борту излучает электромагнитные импульсы (радиоволны) по всем направлениям. Наземный радиомаяк принимает их и через фиксированное время задержки (50 микросекунд) излучает ответный сигнал, который принимается на борту.

    Рис.6.1. Принцип работы дальномерных РНС

    Время t между излучением импульса дальномером и приемом им же ответного импульса складывается из времени прохождения импульса «туда» (от самолета до радиомаяка), такого же времени прохождения ответного сигнала «обратно» и времени задержки. Зная скорость распространения радиоволн с , можно определить расстояние до маяка

    Поскольку радиоволны УКВ-диапазона распространяются по прямой, то L в данной формуле – это наклонная дальность (по прямой линии от самолета до радиомаяка).

    В данном случае получается, что бортовое оборудование как бы запрашивает информацию у радиомаяка, то есть является запросчиком (interrogator), а радиомаяк отвечает ему, является ответчиком (transponder).

    Это общий принцип измерения дальности, но на самом деле, конечно, все сложнее и интереснее. Дальномер излучает не одиночные, а парные импульсы (интервал между импульсами в паре, например, 12 мкс) и радиомаяк «отвечает» только в том случае, если получил именно такой импульс. В противном случае ему пришлось бы отвечать на все случайные импульсы, которые какое-то другое оборудование передало на этой частоте (например, сотовая связь работает в близком диапазоне частот).

    Все самолеты, работающие с данным радиомаяком, излучают импульсы на одной частоте, но интервал между парами импульсов у всех ВС разный, у каждого своя частота повторения импульсов PRF (Pulse Repetition Frequency). Ответчик радиомаяка посылает импульсы с такой же PRF, с какой принял сигналы от данного самолета. Это сделано для того, чтобы каждый самолет получил ответ именно на свой сигнал, а не для другого ВС.

    Кроме того, радиомаяк отвечает не на той частоте, на которой он сигнал принял, а на отличающейся от нее на 63 МГц. Это сделано для того, чтобы бортовой дальномер не принял по ошибке за ответный сигнал радиомаяка собственные импульсы, отраженные от каких-то объектов (гор, облаков, фюзеляжа). В противном случае могло бы получиться так, что дальномер излучил запросные импульсы, они отразились от горы, дальномер их принял и посчитал, что это ответные импульсы от радиомаяка.

    При включении бортового оборудования DME оно вначале работает в режиме поиска и передает запросные импульсы с частотой 150 пар в секунду. Когда ответный сигал получен (обычно через 4-5 секунд) частота следования импульсов уменьшается до 25 в секунду.

    Пропускная способность наземного ответчика ограничена, он может не успевать ответить всему множеству самолетов, которые его запрашивают. Обычно радиомаяк способен обслужить одновременно 100 самолетов. Если их в зоне действия маяка находится больше, то перестают обслуживаться наиболее слабые сигналы, от наиболее удаленных самолетов.

    Для работы DME выделен диапазон частот от 960 до 1215 МГц. Это дециметровые волны (UHF) ультракоротковолнового диапазона, откуда следует, что они распространяются в пределах дальности прямой видимости. Поэтому к ним относится все, что говорилось ранее о максимальной дальности действия средств УКВ-диапазона.

    Но оказывается, что в большинстве случаев пилоту вовсе не обязательно знать, на какой частоте работает радиомаяк DME. Дело в том, что по отдельности, сами по себе, такие радиомаяки устанавливают крайне редко. В большинстве случаев они совмещены (co-located) с маяками VOR или маяками посадочной системы ILS. Конструктивно эти средства с DME могут быть никак не связаны и работают на других частотах, просто установлены в одном и том же месте. В этом случае частоты таких радиомаяков DME и радиомаяков VOR (или ILS) являются спаренными , то есть объединены в пары. Каждой частоте VOR соответствует своя вполне определенная частота DME. Опубликованы специальные таблицы соответствия частот. Например, если частота VOR 108,40 МГц, то частота DME обязательно будет 1045 МГц для запросных импульсов и 982 МГц (на 63 МГц меньше) для ответных импульсов. То же самое и для ILS.

    Частоты VOR и ILS, о которых шла речь в предыдущих главах, пронумерованы и эти номера названы каналами (Channel). Поскольку понятие канала еще понадобится далее, в табл.6.1 в иллюстративных целях приведена небольшая выдержка из общей таблицы частот и каналов.

    Таблица 6.1

    Выдержка из таблицы номеров каналов

    Канал Частота VHF средства, МГц Вид VHF средства Соответствующие частоты DME и TACAN, МГц
    Запрос Ответ
    20Х 108,30 ILS
    20Y 108,35 ILS
    21X 108,40 VOR
    21Y 108,45 VOR
    22X 108,50 ILS
    22Y 108,55 ILS
    23X 108,60 VOR
    24Y 108,65 VOR

    Из таблицы можно видеть, что для каналов, обозначенных Х, частота ответа на 63 МГц меньше, чем запроса, а для каналов У – наоборот на 63 МГц больше.

    Если пилот на своем бортовом оборудовании устанавливает частоту VOR (или ILS), то автоматически устанавливается и соответствующая ей частота DME.

    Могут использоваться радиомаяки трех видов, обозначаемые как DME/N, DME/P и DME/W. В подавляющем большинстве случаев приходится иметь дело с маяками DME/N как на трассах, так и на аэродромах, поэтому под DME далее и будем понимать именно их. Они имеют узкий спектр излучения (N – narrow, узкий). Маяки DME/P являются более точными (P – precision, точность), но устанавливаются, как правило, только в составе микроволновой системы посадки MLS (Microwave Landing System). Но таких систем на аэродромах мира установлено очень мало. Еще реже используются DME/W с широким спектром излучения (W – wide, широкий).

    Бортовое оборудование, работающее с маяками DME, часто называют самолетными дальномерами (например, СД-67, СД-75). Пилоту приходится иметь дело с его индикатором, на котором дальность отображается в виде цифр – электромеханическим способом (барабанный счетчик) или с помощью светодиодов. На рис. 6.2 слева изображен индикатор, входящий в состав СД-67. Если значение дальности на индикаторе недостоверно (например, при потере сигнала), цифры перекрываются бленкером, как и показано на рисунке. На том же рисунке справа изображен «индикатор самолетный дальности ИСД-1», который может работать в составе СД-75. На нем можно изменить единицы измерения дальности (километры или морские мили).

    Значение дальности может быть выведено и на другие индикаторы, например, на HIS.

    Рис. 6.2. Виды индикаторов самолетного дальномера

    DME является очень точным средством. В соответствии со стандартами ИКАО суммарная погрешность измерения дальности, выраженная в метрах, должна быть не больше ±(460+0,0125D), где D – значение измеряемой дальности. Чем дальше самолет от маяка, тем больше погрешность измерения дальности. Указанная погрешность соответствует вероятности 0,95, следовательно, СКП измерения дальности вдвое меньше.

    Это означает, что вблизи радиомаяка СКП имеет порядок около σD=0,3 км, а на удалении, например, D=300 км, уже около σD=2 км. Это очень хорошая точность, которая в большинстве случаев удовлетворяет современным жестким требованиям к точности аэронавигации. У DME/P погрешность еще меньше (порядка 30 м).

    Пересчет наклонной дальности в горизонтальную . Дальномерные системы непосредственно измеряют наклонную дальность, но для навигации чаще необходима дальность горизонтальная. Для определения МС, то есть местоположения ВС на земной поверхности, пилот откладывает дальность на карте, то есть в горизонтальной плоскости. Очевидно, что по величине наклонная и горизонтальная дальности различаются, и если вместо горизонтальной дальности использовать наклонную (например, отложив ее на карте), то будет иметь место погрешность. Она будет иметь систематический характер, поскольку при данных условиях будет иметь одну и ту же величину.

    Разумеется, эта погрешность возникает не по вине самой дальномерной системы (она-то измеряет дальность правильно), а по вине пилота, который вместо одной величины использует другую.

    где H – высота полета;

    R – радиус Земли.

    Можно обратить внимание, что в данной формуле величина H/R очень мала (порядка одной тысячной), следовательно, знаменатель под корнем очень близок к единице. Поэтому данную формулу вполне можно упростить:

    (6.2)

    Очевидно, что эта формула соответствует теореме Пифагора и предполагает, что Земля плоская (рис. 6.3). Однако ею вполне можно пользоваться, учитывая, что в гражданской авиации выполняются полеты не на столь уж больших высотах, особенно по сравнению с радиусом Земли. Например, если полет выполняется на высоте H=10 км и измерена L=300 км, то по точной формуле (с учетом сферичности Земли) получим D=299,598 км, а по приближенной (на плоскости) D= 299,833 км. То есть погрешность составит всего 235 метров. Это сопоставимо со случайной погрешностью измерения дальности с помощью DME. Таким образом, учитывать сферичность Земли при расчете горизонтальной дальности не имеет особого смысла, особенно на небольших удалениях.

    Рис. 6.3. Наклонная и горизонтальная дальности

    Но, может быть, можно вообще не пересчитывать наклонную дальность в горизонтальную? А вот это допустимо делать далеко не всегда.

    Прежде всего, можно обратить внимание, что соотношение между L и D зависит еще и от высоты полета H. Даже из рис. 6.3 можно видеть, что когда ВС находится точно над радиомаяком, наклонная дальность равна высоте полета, а горизонтальная дальность равна нулю. В такой ситуации имеет место самое большое различие между L и D.

    Если самолет находится в воздухе, то показания дальномера никогда не будут равны нулю. Говорят, один молодой штурман при полете на радиомаяк, так и не дождавшись нулевого значения дальности, вдруг увидел, что дальность стала увеличиваться и в ужасе закричал: «Командир! Мы летим передом назад!!».

    Но по мере удаления от радиомаяка различие между этими величинами становится все меньше. Уменьшается разность между гипотенузой (L) и катетом (D) в прямоугольном треугольнике, вершинами которого являются радиомаяк, ВС и МС. Эта разность может стать сравнимой по величине с самой точностью измерения наклонной дальности.

    Например, если H=10 км, а L=70 км (в семь раз больше), то получим D=69,3 км. Наклонная дальность отличается от горизонтальной на 700 м. В большинстве случаев этой погрешностью можно пренебречь, ведь современный самолет пролетает это расстояние за 3 сек.

    Но если при полете на той же высоте наклонная дальность составляет всего L=30 км, то ей соответствует D=28,3 км. Погрешность в 1,7 км является уже довольно существенной, особенно при полете в районе аэродрома, где требуется более высокая точность навигации.

    Пересчет наклонной дальности в горизонтальную можно выполнить непосредственно по формуле (6.2), например, с помощью калькулятора. Но при наличии НЛ-10 это удобнее сделать с использованием вспомогательного угла θ (рис. 6.3). Очевидно, что

    Эти несложные формулы могут быть легко реализованы на НЛ-10 с помощью ключа на рис. 6.4.

    Рис. 6.4. Пересчет наклонной дальности в горизонтальную на НЛ-10

    Применение DME для решения навигационных задач. При полете на радиомаяк или от него легко определить путевую скорость с использованием секундомера. Ведь пройденное расстояние равно изменению дальности, поэтому:

    Разумеется, пройденное расстояние (разность дальностей) не должно быть слишком мало. В противном случае погрешности измерения дальностей могут привести к снижению точности определения W (см. п.).

    Некоторые виды бортового дальномерного оборудования позволяют не только измерять дальность, но и рассчитывать путевую скорость по скорости изменения дальности (рис.6.5). А если уже известна W и расстояние до радиомаяка, нетрудно определить и время полета до него. Разумеется, скорость и время будут определены правильно только в случае, когда ВС летит на радиомаяк или от него.

    Рис. 6.5. Индикатор дальномера с показаниями дальности, скорости и времени

    Измерив две дальности до двух радиомаяков DME можно определить место самолета на карте. Навигационному параметру дальность соответствует ЛРР, имеющая форму окружности. Построив на карте две ЛРР можно найти МС в точке их пересечения (рис.6.6).

    Две окружности, вообще говоря, пересекаются в двух точках, в каждой из которых дальности имеют измеренные значения. Возникает вопрос: в какой из этих двух точек на самом деле находится ВС? Этот вопрос приходится решать отдельно, но обычно большой проблемы здесь нет. Эти две точки чаще всего находятся достаточно далеко друг от друга. Обычно ВС летит близи заданного маршрута и примерный район местоположения ВС известен. Если одна из точек оказалась вблизи ЛЗП, а другая в сотне километров от нее, то пилот легко определит, где ВС находится на самом деле.

    Рис. 6.6. Определение МС по двум дальностям

    Точность определения МС таким способом на карте зависит не столько от погрешностей измерения дальностей (это всего лишь несколько сотен метров), сколько от погрешностей графической работы на карте при прокладке ЛРР. Действительно, с помощью линейки вряд ли возможно отложить расстояние точнее, чем 0,5- 1 мм. Но на полетных картах в зависимости от их масштаба одному миллиметру обычно соответствует 2-4 км.

    Зависит точность и от угла пересечения двух ЛРР, имеющих вид окружностей. Нетрудно сообразить, что две окружности пересекаются по таким же углом, что и радиусы этих окружностей, исходящие из точки пересечения (это углы с взаимно перпендикулярными сторонами). Поэтому при выборе радиомаяков лучше выбирать такие два из них, чтобы угол между направлениями на них был ближе к 90°.

    Таким образом, определить МС на карте дальномерным способом (по двум дальностям) достаточно легко, но на практике этим способом пользуются довольно редко. В частности, потому, что для прокладки ЛРР нужен циркуль, которого в наборе штурманских инструментов пилота обычно нет.

    Однако дальномерный способ определения МС на многих современных ВС автоматизирован. Ведь обобщенный способ определения МС не обязательно предполагает, что линии положения нужно графически наносить на карте. Координаты МС можно определить аналитически, путем расчета. В п. упоминалось, что если известна зависимость двух навигационных параметров (а здесь параметрами являются D 1 и D 2) от координат точки (например, широты и долготы), то путем решения системы из двух уравнений

    D 1 = f 1 (φ,λ),

    D 2 = f 2 (φ,λ),

    можно найти координаты МС φ и λ.

    Вид функций f 1 и f 2 на поверхности земной сферы (не говоря уже об эллипсоиде), является довольно сложным. Если обозначить через φ p и λ p координаты радиомаяков, то формулы будут иметь вид

    D 1 =R arccos(sin φ p1 sin φ+cos φ p1 cos φ cos(λ p1 -λ));

    D 2 =R arccos(sin φ p2 sin φ+cos φ p2 cos φ cos(λ p1 -λ)).

    Понятно, что вручную непросто решить такую систему уравнений и найти координаты самолета φ и λ, но бортовой вычислитель легко справляется с подобной задачей. Координаты радиомаяков уже хранятся в бортовой базе аэронавигационных данных, дальности до этих маяков непрерывно измеряются бортовым оборудованием DME и бортовой вычислитель постоянно рассчитывает текущие координаты самолета. Точность такого автоматизированного способа определения координат довольно высока. Ведь дальности измеряются достаточно точно, а погрешности графической работы на карте вовсе отсутствуют. Поэтому в современной аэронавигации этот способ является вторым по точности после спутниковых навигационных систем.

    Чтобы перелететь из пункта А в пункт Б пилотам необходимо знать, где они сейчас находятся и в каком направлении летят. На заре авиации не было радаров, и свою позицию экипаж воздушного судна определял самостоятельно и сообщал о ней диспетчеру. Теперь же позиция видна на радаре.

    Добираясь из п. А в п. Б, ВС пролетает определенные точки. Сначала это были некие визуальные объекты - населенные пункты, озера, реки, холмы. Экипаж ориентировался визуально и находил свое место на карте. Однако, такой способ требовал постоянного визуального контакта с землей. А в плохую погоду такое не возможно. Это значительно ограничивало возможности полетов.

    Поэтому авиационные инженеры начали разрабатывать навигационные средства. Они требовали наличия передатчика на земле и приемника на борту ВС. Зная, где сейчас находится навигационные средство (а оно стоит неподвижно в известном, нанесенном на карту месте), можно было узнать, где сейчас ВС.

    Радиомаяк (NDВ)

    Первыми навигационным средствами стали радиомаяки (NDB - Non-directional beacon). Это радиостанция, которая передает во все стороны свой опознавательный сигнал (это две или три буквы латинского алфавита, которые передаются азбукой Морзе) на определенной частоте. Приемник на ВС (радиокомпас) просто указывает направление на такой радиомаяк. Для определения позиции ВС нужно не менее 2-х радиомаяков (ВС находится на линии пересечения азимутов от маяков). Теперь ВС летали от маяка к маяку. Это и были первые воздушные трассы (маршруты ОВД) для полетов по приборам. Полеты стали более точными и теперь можно было летать даже в облаках и ночью.

    Очень-высокочастотный (VHF, ОВЧ) всенаправленный радиомаяк (VOR)

    Однако точность NDB со временем стала недостаточной. Тогда инженерами был создан VHF всенаправленный радиомаяк (Very high frequency omni-directional radio range - VOR).

    Как и радиомаяк. VOR передает свой опознавательный индекс азбукой Морзе. Этот индекс всегда состоит из трех латинских букв.

    Дальномерное Оборудование (DME)

    Необходимость знания двух азимутов для определения своего положения требовала использования значительного количество радиомаяков. Поэтому было решено создать дальномерное оборудование (distance measuring equipment - DME). С помощью специального приемника на борту ВС стало возможным узнать удаление от DME.

    Если VOR и DME устройства расположить в одном месте, то по азимуту и удалению от VOR DME ВС может легко вычислить свое положение.

    Точка (Fix/Intersection)

    Но чтобы расставить маяки везде их нужно слишком много, а часто нужно намного точнее определить позицию, чем «над маяком». Поэтому появились точки (fixes, intersections). Точки всегда имели известные азимуты от двух или более радиомаяков. То есть ВС легко могло определить, что оно в данный момент именно над этой точкой. Теперь трассы (маршруты УВД) проходили между радиомаяками и точками.

    Появление систем VORDME позволило размешать точки не только на пересечениях азимутов, но на радиалах и удалениях от VORDME.

    Однако в современных ВС есть системы спутниковой навигации, инерциальные системы исчисления и полетные компьютеры. Их точность достаточна для того, чтобы находить точки, которые не связаны ни с VORDME, ни с NDB, а просто имеют географические координаты. В современном мировом воздушном пространстве так и осуществляются полеты: на маршруте полета ВС длительностью несколько часов может не быть ни одного VOR или NDB маяка.

    Трассы (маршруты ОВД - АТС routes)

    Воздушные трассы (маршруты ОВД) соединяют точки и навигационные средства, и созданы для того, чтобы поток ВС был более упорядоченным. Каждая трасса имеет название и номер.

    Все маршруты ОВД можно разделить на 2 группы: маршруты нижнего воздушного пространства и верхнего. Отличить их легко: первой буквой названия маршрута верхнего воздушного пространства всегда является буква "U". Название трассы UP45 произносится как "Upper Papa 45", но не как "Uniform Papa 45"!

    Например, граница между верхним и нижним воздушным пространством в Украине проходит по эшелону 275. Значит, если ВС летит выше эшелона 275, то оно должно использовать трассы верхнего воздушного пространства.

    Высоты (эшелоны) на которых можно использовать ту или иную трассу также часто бывают ограниченными. Они указываются вдоль линии трассы. Иногда при полете по какой-то трассе используются только четные или нечетные эшелоны, вне зависимости от направления полета. Чаще всего это делают для трасс с севера на юг, чтоб не менять эшелоны с четного на нечетный очень часто.

    Многие трассы являются однонаправленными, то есть ВС летят по ним лишь в одном направлении. А встречные ВС летят по другой (часто соседней) трассе.

    Существуют также временные трассы - CDR (conditional routes), которые используются лишь в определенных условиях (в определенные дни, вводятся НОТАМом и другие варианты). В VATSIM принято считать такие маршруты обычными, то есть любой пилот может использовать их в любое время.

    Таким образом, трасса не просто прямая между точками, у нее есть еще и ряд собственных ограничений и условий, созданных для регулирования потока ВС.

    Угломерный канал навигации VOR предназначен для определения азимута ЛА относительно радионавигационной точки, в которой устанавливается наземное оборудование системы. В состав угломерного канала входит наземное и бортовое оборудование. Наземное оборудование представляет собой радиомаяк, излучающий сигналы, прием и обработка которых на борту ЛА позволяет определить его азимут. Бортовое оборудование представляет собой приемоиндикатор, принцип действия которого определяется используемым в канале методом измерения азимута. При таком построении азимутального канала его пропускная способность не ограничена. В настоящее время различают три основные модификации угломерных систем МВ диапазона:

    с измерением фазы огибающей АМ колебаний (VOR);

    с двухступенчатым измерением фазы (PVOR);

    с использованием эффекта Доплера (DVOR).
    VOR . Радиомаяки VOR имеют две передающие антенны:

    ненаправленную антенну А 1 с диаграммой направленности (ДНА) в горизонтальной плоскости ;

    направленную антенну А 2 с диаграммой направленности в горизонтальной плоскости .

    В любом азимутальном направлении значение диаграммы направленности А 2 характеризуется величиной .

    Антенна А 1

    (1.1)

    с амплитудой .

    Антенна А 2 в любом азимутальном направлении создает поле

    с амплитудой . (1.3)

    Обычно для радиомаяков VOR выполняется условие .

    Диаграммы излучения антенн радиомаяка VOR показаны на рис. 1.6(а).

    Высокочастотные сигналы формируются одним передатчиком и излучаются антеннами, имеющими общий фазовый центр. При сложении полей в пространстве образуется суммарное поле всенаправленного РМ (рис. 1.6(б))
    .


    Рис. 1.6. Диаграммы излучения антенн радиомаяка VOR
    С учетом выражений (1.2) и (1.3) величину суммарного поля можно выразить

    . (1.4)

    Диаграмма направленности А 2 вращается в горизонтальной плоскости с угловой скоростью

    где n – частота вращения ДНА в минуту.

    Длительность одного оборота Т равна периоду вращения, , а частота . Частота вращения в VOR составляет n=1800 об/мин (F=30 Гц) .

    Положение диаграммы направленности А 2 (положение ее максимумов) – функция времени . Вращение антенны вызовет периодическое изменение суммарного поля. Обозначим отношение амплитуд и, подставив в (1.4) значения и , получим

    В результате образуется поле с глубиной амплитудной модуляции , частотой модуляции и фазой огибающей, зависящей от азимута . Колебания, принимаемые бортовым приемником, можно представить выражением

    где К – коэффициент, учитывающий ослабление.

    После усиления и детектирования можно выделить напряжение низкой частоты
    , (1.7)

    фаза которого содержит информацию об азимуте самолета :
    . (1.8)

    Для выделения этой информации на борту ЛА необходимо иметь опорное колебание, несущее информацию о мгновенном положении ДНА. Эта информация должна быть заложена в фазе опорного колебания

    с текущим значением фазы
    (1.9)

    соответствующим угловому положению ДНА в данный момент времени t .

    При наличии на борту ЛА такого опорного напряжения можно определить азимут ЛА как разность фаз опорного и азимутального сигналов (1.8) и (1.9):

    Для работы бортового измерителя необходим опорный сигнал, причем одинаковый для всех ЛА. Этот сигнал необходимо передавать по отдельному каналу связи. В целях сокращения частотных каналов связи опорный сигнал в этих системах передают на той же несущей частоте , что и азимутальный. Разделение азимутального и опорного сигналов по каналам происходит на приемной стороне методом частотной селекции продетектированного по амплитуде комбинированного сигнала. Такая возможность появляется при использовании для передачи опорного сигнала двойной амплитудно-частотной модуляции.

    Рассмотрим формирование сигналов наземным оборудованием и работу бортового оборудования на примере упрощенной структурной схемы канала VOR (рис. 1.7).

    В передатчике (ПРД) формируются высокочастотные колебания частоты . В делителе мощности (ДМ) ВЧ сигнал разделяется на два канала. Часть мощности поступает во вращающуюся антенну А 2 . Частота вращения антенны определяется блоком управления (БУА) и равна F=30 Гц. В радиомаяках применялись различные способы вращения антенны. В первых радиомаяках вращение антенны осуществлялось механическим способом при помощи электродвигателя. Другой способ предусматривает применение гониометрических антенных систем. Позднее были разработаны методы электронного вращения ДНА (метод электронного гониометра), при котором эффект вращения ДНА достигается питанием двух взаимно перпендикулярных направленных антенн с диаграммами в виде восьмерки. Питание антенн осуществляется балансно-модулированными колебаниями со сдвигом по фазе огибающей модуляции на 90°. Антенной А 2 создается электромагнитное поле (1.2).



    Рис. 1.7. Структурная схема канала VOR
    Антенна А 1 является ненаправленной и предназначена для формирования суммарной диаграммы направленности типа «кардиоида» и передачи опорного сигнала. Для формирования сигнала с двойной амплитудно-частотной модуляцией выбирают колебания, частота которых намного больше частоты вращения ДНА, но существенно меньше частоты несущих колебаний, и используют эти колебания в качестве вспомогательных. Вспомогательные колебания называются поднесущей, для которой должно выполнятся условие , где – частота поднесущих колебаний. Для системы VOR частота поднесущей равна F П =9960 Гц.

    В модуляторе поднесущей (МП) осуществляется частотная модуляция поднесущей опорными колебаниями частотой F ОП =30 Гц с девиацией частоты ΔF П =480 Гц при индексе модуляции . В модуляторе МВЧ высокочастотные колебания модулируются по амплитуде напряжением поднесущей с глубиной модуляции .

    Антенна А 1 создает поле с напряженностью

    где – коэффициент амплитудной модуляции; – коэффициент частотной модуляции; – девиация поднесущей частоты.

    Суммарное поле


    воздействует на антенну бортового оборудования А 0 . На выходе антенны получается суммарное колебание вида

    Амплитудно-частотный спектр суммарного колебания показан на рис.1.8(а).


    Рис. 1.8. Амплитудно-частотный спектр:

    а) принятого сигнала;

    б) огибающей принятого сигнала
    Бортовым оборудованием необходимо выделить из суммарного азимутальный и опорный сигналы и произвести их сравнение по фазе.

    После преобразования суммарного сигнала в приемном устройстве (ПРМ), усиления его и детектирования амплитудным детектором выделяется огибающая, содержащая азимутальный и опорный сигналы вида
    , (1.12)

    где и – амплитуды составляющих полного сигнала.

    Из спектра сигнала (1.12), представленного на рис. 1.8(б), видно, что азимутальный и опорный сигналы можно выделить путем частотной селекции. Для этой цели с выхода ПРМ сигнал подается на два фильтра Ф1 и Ф2.

    В фильтре Ф1, настроенном на частоту (f=30 Гц ), выделяется азимутальный сигнал или сигнал переменной фазы, а в фильтре Ф2, настроенном на поднесущую частоту (f=9960 Гц ), выделяется частотно-модулированное поднесущее колебание. После симметричного ограничения в усилителе-ограничителе (УО) в частотном детекторе (ЧД) выделяется опорное колебание.

    В результате преобразований получены:

    азимутальный сигнал ;

    опорный сигнал .

    Опорное напряжение подается на фазовращатели ФВ1 и ФВ2. В исходном положении ось ФВ1 повернута на произвольный угол b , что вызывает дополнительный сдвиг фазы опорного напряжения на величину b

    И . (1.13)

    Азимутальное и опорное напряжение подается на фазовый детектор ФД1. Разница фаз между напряжениями на входе

    Напряжение на выходе фазового детектора ФД1:

    Это постоянное напряжение преобразуется (в ПНН) в сигнал рассогласования с частотой 400 Гц и подается на управляющую обмотку электродвигателя (ДВ), который поворачивает ось ротора фазовращателя ФВ1 до тех пор, пока разность фаз не станет равной нулю. При этом и . Таким образом, угол поворота ротора фазовращателя ФВ1 становится равным азимуту самолета. Ось ФВ1 связана с осью сельсин-датчика (СД), который передает результаты измерений на указатели азимута.

    В системе VOR предусмотрена возможность полета самолета по заданному азимуту . Для этого в схему введены ФД2 и ФВ2. Ось ФВ2 поворачивается вручную и устанавливается на заданный угол . При этом фаза опорного напряжения дополнительно сдвигается на величину и становится

    . (1.16)

    Это напряжение подается на вход ФД2. На второй вход подается азимутальное напряжение с фазой

    .

    Разность фаз азимутального и опорного напряжений на входе ФД2

    После фазового детектирования согласно (1.15) на выходе детектора
    .

    Когда , и азимут самолета совпадает с заданным направлением. Эта задача решается при полете ЛА на радиомаяк VOR или от него. Для индикации полета на радиомаяк или от него в схему вводится ФД3, на который подаются.

    :: Текущая]

    Основы VOR-навигации


    Основным навигационным средством в большинстве стран является VOR (VHF Omnidirectional Range navigation system), что в переводе на русский называет всенаправленный курсовой радиомаяк УКВ диапазона . Появившиеся в последнее время спутниковые навигационные системы не заменяют VOR, а дополняют их.

    Самолеты летают по воздушным трассам, которые строятся из отрезков. Отрезки образуют сеть, опутывающую целые государства. В узлах этой сети (на концах отрезков) расположены VOR-радиостанции.

    Радиомаяк VOR состоит из двух передатчиков на частотах 108,00-117,95 МГц . Первый передатчик VOR передает постоянный сигнал во все стороны, в то время как второй передатчик VOR представляет собой узконаправленный вращающийся луч , изменяющийся по фазе в зависимости от угла поворота, то есть луч пробегает круг в 360 градусов (как луч маяка). В результате получается диаграмма излучения в виде 360 лучей (один луч через каждый градус окружности). Принимающая аппаратура сравнивает оба сигнала и определяет «угол луча», на котором в данный момент находится самолет. Такой угол называется VOR-радиалом (VOR Radial).

    VOR-оборудование на борту самолета может определить, на каком из VOR-радиалов известной радиостанции находится самолет.


    На пилотажной карте вы можете найти необходимую VOR-станцию. На схеме выше показан самолет, находящийся на радиале 30 от VOR. Каждый VOR имеет свое название (VOR на рисунке называется KEMPTEN VOR) и сокращенное трехбуквенное обозначение (VOR на рисунке обозначается KPT). Рядом с VOR написана его частота, которую надо вводить в приемник. Таким образом, чтобы поймать сигнал от KEMPTEN VOR, надо ввести в приемник частоту 109.60.

    Очень часто самолеты оборудуются не одним, а сразу двумя приемниками VOR. В таком случае один приемник называется NAV 1, а второй соответственно NAV 2. Для ввода частоты в приемник VOR используется двойная круглая ручка. Большая ее часть используется для ввода целых, меньшая - дробных долей частоты VOR. Ниже показана типичная панель управления радионавигационными приборами.


    Задатчики частот VOR подписаны красным цветом. Это простейший вид приемников, который позволяет ввести только одну частоту VOR. Более сложные системы позволяют ввести сразу две частоты VOR, и быстро переключаться между ними. Одна частота VOR является неактивной (STAND BY), ее изменяет ручка задатчика частоты . Вторая частота VOR называется активной (ACTIVE), это та частота VOR, на которую настроен приемник в данный момент.



    На рисунке выше показан пример приемника с двумя задатчиками частоты VOR. Пользоваться им очень просто: при помощи круглого задатчика надо ввести требуемую частоту VOR, а затем сделать ее активной при помощи переключателя. При наведении мыши на колесико задатчика курсор мыши меняет форму. Если он выглядит как маленькая стрелка, то при нажатии на мышь сменятся десятые доли. Если стрелка большая, то изменяться будет целая часть числа.

    В кабине так же должен быть прибор, показывающий, на каком радиале VOR в данный момент находится самолет. Этот прибор обычно называется NAV 1, или VOR 1. Как мы уже выяснили, в самолете может иметься второй такой прибор. В самолете Cessna 172 их два:


    Прибор состоит из:

    • подвижной шкалы, напоминающей шкалу компаса
    • круглой ручки задатчика OBS
    • стрелки индикатора направления TO-FROM
    • транспаранта GS
    • двух планок, вертикальной и горизонтальной

    Горизонтальная планка и транспарант GS используются при посадке по системе ILS.

    Ручка OBS вращает подвижную шкалу и настраивает тем самым приемник VOR на требуемый радиал. Например, так может выглядеть прибор, настроенный на радиал 30:


    На рисунке видно, что при вращении ручки OBS шкала поворачивается, и верхний уголок показывает на номер текущего радиала. Как и на компасе, все номера на приборе пишутся деленные на 10, таким образом цифра 3 обозначает радиал 30 .

    Вертикальная планка показывает отклонение от радиала. Если самолет находится на радиале, то планка будет стоять вертикально:



    Если самолет сместится правее радиала, то вертикальная планка отклонится влево, чтобы показать что к радиалу надо лететь в левую сторону.



    Когда пилот видит такую картину, он знает что для выхода на радиал надо повернуть влево. Правило очень простое: планка показывается в той стороне, в которую надо лететь.

    Аналогичная картина будет в случае если самолет окажется левее нужного радиала:



    Обратите внимание, что в данном случае самолет отклонился от радиала сильнее, и планка прибора соответственно так же отклонилась сильнее.

    Важной особенностью VOR является то, что прибор всегда показывает радиал, на котором находится самолет, независимо от курса , которым идет самолет. Например, на рисунке ниже показаны самолеты, летящие разными курсами. Поскольку они находятся на одном и том же радиале и у них одинаково настроен OBS, прибор VOR у всех самолетов покажет одно и то же.



    При полетах по VOR нужно помнить, что чувствительность прибора VOR возрастает при подлете к радиомаяку VOR, пока не пропадает в непосредственной близости от маяка. Около маяка VOR не надо гоняться за планкой, вместо этого, когда чувствительность становится чрезмерной, надо продолжать двигаться прежним курсом пока самолет не пройдет над маяком VOR.

    Итак, чтобы лететь по радиалу VOR надо настроить на приемнике его частоту VOR, задать при помощи OBS номер требуемого радиала и удерживать вертикальную планку по центру прибора. Если планка отклоняется влево, надо довернуть налево. Если вправо, надо повернуть направо. В случае бокового ветра, нужно довернуть на ветер, чтобы компенсировать снос самолета. Более подробно про полет в ветер можно прочитать в статье про NDB навигацию.

    VOR навигация в обратном направлении

    Мы рассмотрели полет по направлению к VOR . Точно также можно летать и в обратном направлении .


    Обратите внимание, что уголок направления показывает теперь на надпись FR , что означает что самолет движется по направлению от VOR . Самолет на рисунке немножко отклонился вправо, поэтому планка на приборе показывает что радиал находится левее.

    Распространенная ошибка , совершаемая многими, заключается в установке неправильного номера радиала . Если бы на рисунке выше пилот вместо радиала 30 установил бы радиал 120, то стрелка показывала бы направление TO , а планка отклонялась бы в противоположную сторону. Поэтому очень важно всегда правильно задавать направление радиала и контролировать расположение VOR по уголку TO-FROM .

    Запомнить, как правильно задавать радиал, очень просто: номер радиала - это курс, которым должен лететь самолет, двигаясь по радиалу в безветренную погоду. При этом не важно, летит самолет от VOR или по направлению к нему, всегда вводите в OBS тот курс, которым хотите двигаться. Номера радиалов VOR соответствуют истинному курсу, а не магнитному.

    Определение текущего радиала VOR

    Иногда бывает нужно определить, на каком радиале в данный момент находится самолет. Для этого надо вращать задатчик OBS до тех пор, пока на приборе стрелка направления не укажет на TO , а планка отклонения не станет строго вертикально. Отложив на карте полученный номер VOR-радиала, можно прикинуть свое местоположения. Правда, это метод не покажет расстояние до VOR.

    Но VOR-станция может иметь еще и дальномерное оборудование (DME - Distance Measurement Equipment). Радиостанции с таким оборудованием обозначаются на карте VOR-DME или VORTAC. Вы увидите расстояние в NM до VOR-станции на приборной доске в окошечке DME1 или DME2 соответственно. Теперь, зная масштаб карты, можно отметить на VOR-радиале точное место самолета в данный момент времени.

    Часто расстояние DME, которое вы видите на приборной доске не соответствует расстоянию по карте. Это расстояние от наземной VOR-радиостанции до вашего самолета, летящего на определенной высоте. Т.е. это гипотенуза прямоугольного треугольника, один катет которого - ваша высота, а второй - расстояние по земле от VOR-радиостанции, до точки над которой вы сейчас пролетаете. Особенно неточными становятся эти данные, когда вы близко от VOR-радиостанции (пролетая строго над ней вы получите свою высоту). Поэтому, нужно резервировать одну-две мили, если коридор в контролируемом воздушном пространстве требует обязательного выхода на связь с диспетчером при пролете VOR-станции.

    Перехват определённого радиала VOR

    Частая навигационная задача - перехват определенного радиала. Например, нам нужно выйти на воздушную трассу, которая проходит по 30-му радиалу VOR. Мы знаем что находимся где-то левее радиала (а если не знаем, то можем это определить так, как было описано выше):

    Первое, что нам надо сделать - это настроиться на частоту VOR и ввести при помощи задатчика OBS требуемый радиал. Прибор покажет примерно следующее:


    Из этого видно, что радиал где-то далеко справа. Теперь надо решить, под каким углом мы будем перехватывать радиал. Самое быстрый способ перехватить радиал - лететь перпендикулярно ему, но это не приблизит нас к конечной точке маршрута. Выбираем разумный компромисс, и двинемся под углом 40 градусов к радиалу. Так как радиал находится справа, чтобы получить курс перехвата, добавим к курсу радиала (30 градусов) угол перехвата (40 градусов), и получим курс перехвата (70 градусов). Если бы радиал находился слева, угол перехвата надо было бы отнимать.

    Довернем на полученный курс перехвата (70 градусов), и начнем путь к радиалу:


    Красной пунктирной линией показан курс перехвата. Лететь этим курсом надо до тех пор, пока прибор не покажет что самолет находится на радиале:



    Все что осталось, это развернуться и полететь по радиалу курсом 30 градусов. Чтобы не перелететь мимо радиала, надо начинать разворот заранее, не дожидаясь пока планка встанет строго вертикально.

    Переход с одного радиала на другой

    Иногда возникают ситуации, когда нужно перейти с одного радиала на другой. Такое может потребоваться при переходе с одной воздушной трассы на другую. Рассмотрим следующий пример, изображенный на схеме:



    Предположим что самолету надо пролететь по радиалу 30 от VOR 1 до точки FIX, после чего необходимо повернуть курсом 90 градусом и двигаться к VOR 2. Эта задача легко решается при помощи использования двух приемников VOR одновременно. В приемник NAV1 введем частоту VOR 1 и настроем его на радиал 30, в приемник NAV2 - частоту VOR 2 и радиал 90 градусов:



    Верхний приемник, настроенный на VOR 1 показывает что самолет находится точно на радиале 30 градусов и летит курсом к нему. Нижний, настроенный на VOR 2, говорит что до радиала 90 градусов еще далеко. Продолжаем движение по радиалу пока второй приемник не покажет, что мы подходим к радиалу 90 градусов:



    Не дожидаясь пока стрелка VOR 2 встанет строго вертикально, заранее начнем разворот на 90 градусов. После разворота останется только продолжить движение по радиалу 90 градусов по направлению к VOR 2:

    Приемник NAV1 больше не нужен, и его лучше настроить на какую-нибудь несуществующую частоту, чтобы случайно не перепутать с NAV2, который используется в данный момент.

    Рекомендуется начать практиковаться на симуляторе VOR, расположенному по адресу: http://www.luizmonteiro.com/Learning_VOR_Sim.htm . Попробуйте настроиться на какой-нибудь радиал и «пролететь» по нему на самолете, обращая внимания куда будет отклоняться стрелка при отдалении от радиала в ту или иную сторону.

    Ограничения VOR-навигации

    Система VOR-навигации - достаточно дорогая в масштабах страны. Дело в том, что VOR-оборудование имеет ограничения по дальности, как любая УКВ радиостанция или телевизионная вышка. УКВ радиосредства работают только в прямой видимости. Это значит, что препятствия могут закрывать от вас VOR-радиостанцию, пока вы не подниметесь на достаточную высоту. Сам радиус действия сигнала VOR также ограничен. До 5500 метров высоты вы можете принимать сигналы VOR на удалении 40-130 NM в зависимости от рельефа местности. Выше VOR-сигналы можно принимать на максимальном расстоянии 130 NM.


    ©2007-2014, Виртуальная авиакомпания X-Airways

    [ :: Текущая]